THE FLAVONOIDS OF PARTHENIUM L.

JAMES A. MEARS

Phytochemistry Laboratory, Academy of Natural Sciences of Philadelphia

ABSTRACT.—The distribution of 34 flavonoids detected in the North American species of *Parthenium* L. is presented. Of the 27 flavonoids identified (some tentatively) all are flavonols: eight are based on kaempferol, seven on quercetin, four on 6-hydroxykaempferol and eight on the quercetagetin skeleton. Of the 34 flavonoids detected, 19 are glycosides and 15 are aglycones, primarily highly methylated compounds.

Parthenium L. is a genus of the Asteraceae (Compositae) long considered to be part of the Melampodiinae but recently included with the ragweeds in the Ambrosiinae (1). The biology and chemistry of Parthenium has been of interest because P. argentatum Gray (guayule) is a desert species which is a source of natural rubber (2) and P. hysterophorus L. (Santa Maria feverfew, muleweed) causes severe contact dermatitis (3, 4, 5). The sesquiterpene lactone chemistry of the genus has been well summarized (6, 7, 8), and several papers (9, 10, 11) have provided information about flavonoids of several species of the genus. Here the results of an examination of the flavonoid constituents of all the North American species of Parthenium are correlated with the earlier published data.

RESULTS

The distribution of 34 flavonoids detected in North American *Parthenium* species is shown in table 1. The proposed structures of 27 of the flavonoids are indicated in figure 1.

All the proposed structures are flavonols: derivatives of kaempferol (XIII, XIV, XIX-XXII, XXVII, XXVIII), quercetin (IX, XV, XVIII, XXIII-XXVI), 6-hydroxykaempferol (II, VII, VIII, XVI), and quercetagetin (III-VI, X-XII, XVII).

Parthenium tomentosum DC. is characterized here as a species of two varieties: P. tomentosum var. tomentosum and P. tomentosum var. stramonium (Greene) Rollins. Only a few derivatives of quercetin and quercetagetin were detected in var. tomentosum, although Rodriguez (11) reports other minor components. Minor components were detected in many taxa but are not included here unless they occurred sufficiently frequently to be regarded as dependable taxonomic units. Two unidentified glycosides were also detected in var. tomentosum. Similarly, only a few derivatives of kaempferol and quercetagetin were detected in var. stramonium.

Parthenium fruticosum Less is also composed of two varieties (12): var. fruticosum and var. trilobatum Rollins. One aglycone derivative of quercetagetin and three glycoside derivatives of kaempferol and quercetin were detected in var. fruticosum. Six aglycones, derivatives of quercetagetin, quercetin, 6-hydroxykaempferol, kaempferol and kaempferol 3-methyl ether, and three glycosides, derivatives of quercetagetin and quercetin, were detected in var. trilobatum. Parthenium lozanianum Blake, which is very closely related to P. fruticosum var. trilobatum, produces much the same pattern as P. fruticosum var. trilobatum, except that kaempferol 3-methyl ether was not detected in P. lozanianum.

Parthenium schottii Greenman, which is endemic to limestone in Yucatan, was found to produce only one flavonoid, quercetagetin 3,7-dimethyl ether; however, it is possible that fresher material would result in a richer species pattern.

Ρ.

F			R4 R1	35	
Compounds	\mathbf{R}_1	R_2	R_3	R_4	$R_{\mathfrak{z}}$
II III IV V VI VII VIII IX X XI XII XIII XIV XVI XVI	OCH ³ OCH ³ OC	$\begin{array}{c} {\rm OCH}_{3} \\ {\rm OH} \\ {\rm OCH}_{3} \\ {\rm OCH}_{3} \\ {\rm OH} \\ {\rm OH} \\ {\rm OCH}_{3} \\ {\rm H} \\ {\rm H} \\ {\rm H} \\ {\rm H} \\ {\rm OCH}_{3} \\ {\rm OCH}_{5} \\ {\rm H} \end{array}$	OH OCH ₃ OH OHC ₃ OCH ₄ OCH ₃ OCH ₃ OCH OCH ₃ OCH OCH ₃ OCH	H OH OCH3 OCH3 H OCH3 OCH3 OCH3 H OCH3 H OCH3 H OCH3 H OCH3 H OCH3 H OCH3 H OCH3 H OCH3 H OCH3 H OCH3 H OCH3 OCH3	$\begin{array}{c} OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OCH_3\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH$

Parthenium rollinsianum Rzedowski morphologically links the sections Parthenichaeta and Bolophytum of Rollins (12). Although Rodriquez (11) detected five flavonoid aglycones and eleven glycosides, the samples analyzed here showed no glycosides. The aglycones are all derivatives of quercetagetin, 6-hydroxykaempferol, and quercetin. Rodriguez also reported (11) glycosides of quercetin and quercetagetin derivatives.

In northern Mexico and western Texas Parthenium incanum HBK. hybridizes with P. argentatum Gray. Many of the desert populations show some signs of combinations of the characters which distinguish mesic forms of P. incanum from the desert limestone forms of P. argentatum. The few samples of P. incanum which showed little morphological evidence of influence by *argentatum* characters produced a flavonoid pattern with only one aglycone, kaempferol 3-methyl ether, and with eight flavonoid glycosides, derivatives of quercetin, quercetagetin and kaempferol. The several samples of P. argentatum showing little evidence of influence by *P. incanum* characters produced a flavonoid pattern rich in aglycones and glycosides: derivatives of quercetagetin, 6-hydroxykaempferol, quercetin, kaempferol and kaempferol 3-methyl ether. The many intermediate samples showed individually and collectively a strongly complementary pattern of seven aglycone derivatives of quercetagetin, 6-hydroxykaempferol, quercetin, kaempferol and kaempferol 3-methyl ether and thirteen glycoside derivatives of all those structural types except 6-hydroxykaempferol.

	Structure unknown (I: 0.48, 0.04)	6-Methoxykaemplerol 3-methył ether (11)	Qr 3,7-dimethyl ether (III)	Qg 3.6.7-trimethyl ether (1V)	Qg 3,6,3'.4'-tetramethyl ether (V)	Qg 3,7,3'-trimethyl ether (VI)	6-Hydroxykaempferol 3.7- dimethyl ether (VII)	6-Hydroxykaempferol 3.6.7- trimethyl ether (VIII)	Q 3,3'-dimethyl ether (IX)	Qg 3,6,7,4 ⁻¹ tetramethyl ether (X)	Qg 3,6,7,3-totramethyl ether (X1)
TAXA. SECT. PARTHENICHAETA P, tomentosum ² . var. stramonium. P. fruitcosum ² . var. fruitcosum ² . var. fruitcosum var. trilobatum P. lozanianum P. solotini P. rollinsianum P. rollinsianum P. argentatum P. argentatum X incanum			•••••••••••••••••••••••••••••••••••••••	•			000	C 0 •	0 00		•
SECT. BOLOPHYTUM P. alpinum P. tetraneur15 P. ligulatum					•	0				•	•
SECT. PARTHENIASTRUM P. integrifolium ² var. integrifolium var. henryanum var. auriculatum var. auriculatum var. hispidum f. repens P. radfordii.						000 0	0 • •				
SECT. ARGYROCHAETA P. confertum ² . var. confertum. var. diraricatum var. lyratum. var. microcephalum. P. densipilum P. bipinnatifidum P. hysterophorus.	0	0 0 0 00				• • • • • • • •	• • • • • •			•	

TABLE 1. Distribution of 34 flavonoids detected in North American Parthenium¹

Filled circles indicate compounds regularly detected in a taxon as a major component; hollow circles indicate compounds detected as minor components or often missing in a taxon. Rt values (TBA, 15% HOAc) are given for all unknown and incompletely identified compounds. In the names of the flavonoids, K, Q, and Qg are used for kaempferol, quercetin and quercetagetin, respectively.

²The use of filled and hollow circles to indicate patterns for those species in which varieties were studied represents a synthesis of the data for the varieties studied.

Qg 3,6,7,3',4' pentamethyl ether (NII)	K 7-methyl ether (XHI)	K 3 methyl ether (XIV)	Q 3,7,3',4'-tetramethyl ether (XV)	6 Methoxykaempferol 3-methyl ethor 7-glycoside (XVI)	Q£ 3.6-dimethyl ether (XVII)	Isorhunnetin 3.glycoside (XVIII)	K 3-glycoside (NIX; 0.66, 0.49)	K 3-glycoside (NX; 0.58, 0.51)	K 3-glycoside (NNI; 0.54, 0.42)	K 3-glycoside (XXII:0.21, 0.55)	Q 3-glycoside (XXIII; 0.43, 0.43)	Q 3 glycoside (XXIV: 0.47, 0.33)	Q 3-glycoside (XXV; 0.37, 0.42)	Q 3. glycoside (XXVI; 0.58, 0.65)	(2.3,21-dimethyl ether 7-glycoside (XXVII; 0.25, 0.76)	(23.3 ¹ -dimethyl ether 7-glycoside (XXVIII; 0.40, 0.80)	Structure unknown (NXLN; 0.23, 0.52)	Structure unknown (XXX; 0.23, 0.35)	Structure unknown (NNNI; 0.42, 0.58)	Structure unknown (XXXII; 0.20, 0.32)	Structure unknown (XXXIII: 0.18, 0.49)	Structure unknown (XXXIV; 0.10, 0.44)
•	0	0 0			•••••		• • • • •	0	•		•• 00				0	0	00		•••••			
	00	000		•	•		•••		•	<u> </u>	•	00	000		•	000	0			0	0	0
	0	•••••	00 000			0 0 0 0	••••	• 000000	00 • 00		000 000	•0	00 00		•	00 00				N		
		• • • • • • •			000 000	00	•••••••••••••••••••••••••••••••••••••••	00 000	••••			0	0 0 • 0	0 0	00	0 00		0000		•		

TABLE 1. Distribution of 34 flavonoids detected in North American Parthenium¹

The forementioned species are all the species of Rollins' section *Parthenichaeta* DC. except *P. cineraceum* Rollins of Bolivia. Rodriguez (11) noted the occurrence of both aglycones and glycosides in *P. cineraceum*, but no structural types have been reported. Section *Parthenichaeta* is characterized by a wide variety of aglycone and glycoside derivatives of methylated and unmethylated derivatives of

American Parthenium
avonoids of North
for the fl
graphic data
d chromato
Spectrophotometric and
TABLE 2.

	Rr x 100	00											NaOAc/	Ac/
	1.000		MeOH	II	NaOMe	Me	AICI ₃	13	AICI ₃ /HCI	HCI	NaOAc	Ac	HaBOa	ő
	TBA 15% HOAe	, HUAe	max, nm	nn	max, nm	mu	max, nm	uu	max, nm	шш	max, nm	mu	тах, пт	nm
6-Methoxykaempferol 3-methyl ether (II) (18) ¹	54	12	337	270	398	320	402sh	369	400sh	361	390	320	340	269
					279		276		272		272			
Quercetagetin 3,7-dimethyl ether (III) ^{2, 3} (10)	56	4	348	280	395	268	430	375sh	370	298	402	375	370	285sh
			261sh				296sh	280	271		264		269	
Quercetagetin 3,6,7-trimethyl ether (LV) ^{2,3} (10)	60	ло И	347	278	388	268	433	375sh	372	297sh	400	370	368	285sh
Oursester 2, 6, 91, 11, 14, 14, 14, 14, 14, 14, 14, 14, 1	;	4		:			294sh	278	270		262		269	
Verecenterin o,0,0,4 - versine on yr cener (v)- (9)	19	10	344	276	375	305	384	293sh	376	291sh	338	281	341	280
Quercetagetin 3,7,3 ¹ -trimethyl ether (VI) ² (10)	68	01	255 349	278	267 395	020	271 430eb	245sh 300	264 376	242sh	017	965	140	000
			260sh	,			10001 1004	267	696	110707	016	007	100	707
6-Hydroxykaempferol 3,7-dimethyl ether (VII) ^{2, 3} (10)	72	13	340	276	380	295sh	372	90	364	295	340	275	339	284
6-Hydroxykwemplerol 3,6,7-trimethyl ether (VIII)2. ³ (13)	80	30	340	279	269sh 380	322	369	308ah	Fyg	306eh	008	970	de001	110
					282		283		280	267	200	i	289	000
Quercetin 3,3 ¹ -dimethyl ether (IX) ² (21)	82	20	369	267sh	407	330	405	368	402	361	379	319	360	267
			255		272		300	269	292	266	274		252	
Quercetagetin 3,6,7,4 ⁺ -tetramethyl ether (X) ² (9, 13)	87	8	347	270sh	376	273	404sh	387	400sh	367	354	270sh	350	271sh
			258				300 sh	280sh	295 sh	281	257		257	
		-					268		265					
Quercetagetin 3,0,7,3'-fetramethyl ether (AI) ² (9, 10)	75	40	346	269sh	402	284ah	380	296sh	373	296sh	412sh	350	348	268sh
Anomator and the second s	;		254		272		277sh	266	275sh	263	268sh	253	254	
Vuctoeusgeun 3,0,7,5,74 -pentametryt etner (A11) ² (9, 13)	86	34	347	275	386sh	325sh	375	280sh	365	285	343	275	347	273
Kaningtond 7 mother other / VIIIV (00)			255		290		267		267				255	
	89	2	365	320sh	$410 \mathrm{dec}$	265	423	350	420	350	415 dec	370	368	320sh
Kaempferol 3-methyl ether (XIV) ² (21)	55	20	265 345	251sh 261	243 305	395	265 305	350	264 205	3AE	320sh 205	200-1-	260sh 246	209.4
					273		302sh	371	300sh	273	290	Henne	263	110700
Querectin 3.7,3',4'-tetramethyl ether (XV) ² (21)	80	15	355	330sh	365	307sh	400	300sh	398	300sh	357	271sh	356	306sh
			255		284		274		275		257		258	
0-MethoXykaemplerol 3-methyl ether 7-glycoside (XVI) ²	45	20	338	279	382	248sh	373	298	366	294	390	281	338	238
			236sh				240		238					
6-Methoxykaemplerol 3-inethyl ether (hydrolyzed XVI) (18)	VN		337	255sh	400	330sh	375	296sh	367	300sh	393sh	335	330sh	285sh
() nowoftwotis 2.6. discripted of the 7.2.1.1.1.1.0.000	0				250 sh		252sh		255sh		297 sh			
$\chi_{\rm ucc}$ composition of a content of the t-given of Λ A II), (b), (h)	R	8	352	278	398	270	434	342sh	377	290	404	298sh	357	280sh
Quercetagetin 3.6-dimethyl ether (hydrolyzod XVII) (9)	N		260	970°.	100	L'aut	308sh	279	267	242sh	273		268	
			946ah	119017	400 981eh	IISCOO	420 970-1-	0105016	5/4	967	VN		VV V	_
				-	110107	-	112017	-		-		-		

712

JOURNAL OF NATURAL PRODUCTS [VOL. 43, NO. 6

Isorharnnetin 3-glycoside (XVIII)'t (13)	73	0į	361	300sh	417	320	405	322sh	400	322sh	385	312	365	300sh	
			287sh	258	274		275		275		274		267sh	260	
Kaempferol 3-glycoside (NIX)4.5 (13).	3	6	345	300	395	325	400	350	395	350	391	310	352	300	-
			265	-	275		305	275	303	275	275		268		
Querectin 3-glycoside (XXIII) ^{1,5} .	43	43	352	265	407	330	413	352	÷10:3	360	398	325	370	260	0
					277		399	268	300 sh	270	266				10
Querectin 3,3 ¹ -dimethyl ether 7-glycoside (XXVII) ⁴	25	76	350	266	406	272	397	352	398	350	418	355	352	265	
							274		274		265				~]
Quercetin 3.3 ¹ -dimethyl ether 7-glycoside (XXVIII) ⁴	40	80	349	262	405	265	395	349	396	346	418	350	347	262	
• • •							274		273		257				
			_							_		_			
						_						-			
															-

'References are to earlier reports of flavonoids, for comparison.

²Demethylation gave the expected aglycone.

Comparison of Rr's of homologous series of 6-hydroxylated flavonoids, with and without methylation at Cs, indicated that for the pairs 111 and 171 and V111 and V111, where the spectral data does not discriminate methylation of the Ca hydroxyl, the more highly methylated compounds should have the highler Ri's in 15% HOAc.

⁴IIydrolysis gave the expected aglycone.

"Three additional 3.glycowides each of knemplerol (XX, XXI, XXII) and querestin (XXIV, XXV, XXVI) gave UV spectra essentially identical to those observed for XIX and XXIII, respectively. See Table 1 for their Re's. quercetagetin, quercetin, 6-hydroxykaempferol, kaempferol and kaempferol 3-methyl ether.

Parthenium alpinum (Nuttall) Torrey & Gray, P. ligulatum (Jones) Barneby and P. tetraneuris Barneby, three species of the temperate (western U.S.) section Bolophytum (Nuttall) Torrey & Gray, were characterized earlier (9) as producing methylated aglycones and glycosides of quercetagetin and 6-hydroxykaempferol. Compound XVII, detected in P. tetraneuris and P. alpinum, is a flavonol, 3,6-Omethylquercetagetin 7-O-glycoside; it was earlier reported erroneously to be a flavone, 6-methoxyluteolin 7-O-glycoside. A previously undetermined constituent of P. alpinum and P. tetraneuris has been identified tentatively, on the basis of chromatographic data, with 3,7,3'-tri-O-methylquercetagetin, which was reported by Rodriguez (11) from P. bipinnatifidum and P. hysterophorus.

The two species and five other subspecific taxa of section *Partheniastrum* DC. are very similar in flavonoid chemistry, with the more widespread varieties showing more minor constituents: aglycones of quercetagetin, 6-hydroxykaempferol, quercetin and kaempferol derivatives and glycosides of 6-hydroxykaempferol, quercetin and kaempferol derivatives. Some of the varieties and forms of P. integrifolium L. produce very few detectable flavonoids. Var. integrifolium produces five aglycones and nine glycosides; var. *henryanum* Mears, four aglycones and four glycosides; var. mabryanum Mears, one aglycone and four glycosides of kaempferol; var. auriculatum (Britton) Cornelius ex Cronquist, two aglycones and eight glycosides; var. his pidum (Rafinesque) Mears f. his pidum, three aglycones and nine glycosides; and var. hispidum f. repens (Eggert) Mears, one aglycone and two glycosides of kaempferol. Some varieties and forms of P. integrifolium do not produce detectable amounts of flavonoids oxygenated at C6. Parthenium radfordii Mears produces two aglycones (6-hydroxy-3,7-di-O-methyl kaempferol and kaempferol 3-methyl ether) and six glycosides (glycosides of kaempferol, kaempferol 3-methyl ether and quercetin).

Section Argyrochaeta (Cavanilles) DC. of Rollins (12) contains four North American species, P. confertum (Grav) Grav, P. densipilum Wooton, P. hysterophorus L., and P. bipinnatifidum (Ortega) Rollins, as well as P. glomeratum Rollins, which is endemic to northwestern Argentina and Bolivia. Parthenium confertum consists of several varieties: var. confertum, characterized by two flavonoid aglycones and four glycosides, derivatives of quercetagetin and kaempferol; var. divaricatum Rollins, by five aglycones (derivatives of quercetagetin, 6-hydroxykaempferol and quercetin) and no glycosides (derivatives of 6-hydroxykaempferol, quercetin and kaempferol); var. lyratum (Gray) Rollins, by four aglycones (derivatives of quercetagetin, 6-hydroxykaempferol and kaempferol 3-methyl ether) and four glycosides (derivatives of kaempferol and quercetin); yar. microcephalum Rollins, by three aglycones (derivatives of quercetagetin and 6-hydroxykaempferol) and five glycosides (derivatives of quercetin and kaempferol). Parthenium densipilum, a very rare limestone endemic very closely related to P. confertum, is characterized by three aglycones (derivatives of quercetagetin, 6-hydroxykaempferol and kaempferol 3-methyl ether) and five glycosides of quercetin and kaempferol. Parthenium bipinnatifidum is characterized by seven aglycones (derivatives of quercetagetin, 6-hvdroxvkaempferol and kaempferol 3-methyl ether) and ten glycosides of quercetagetin, quercetin, and kaempferol derivatives. Its very close relative P. glomeratum Rollins, which was not examined in this study, was reported by Shen et al. (10) to produce a subset of the flavonoids of P. bipinnatifidum. Parthenium hysterophorus, which is very closely related to both P. bipinnatifidum and

P. glomeratum, differs from P. bipinnatifidum in a few details; P. hysterophorus is characterized by six aglycones (derivatives of quercetagetin, 6-hydroxykaempferol, kaempferol and kaempferol 3-methyl ether) and ten glycosides of quercetagetin, quercetin and kaempferol derivatives. Section Argyrochaeta DC. of Rollins, is therefore characterized by the presence of many aglycones of all four major structural types as well as by the presence of glycosides of quercetagetin, quercetin and kaempferol derivatives.

All of the sections of Parthenium recognized by Rollins (12) contain some species which produce many aglycones and many glycosides except section Bolophytum, which produces primarily aglycones, with a few glycosides in *P. tetraneuris*. Similarly, all the sections tend to produce both the usual flavonoids, kaempferol and quercetin derivatives, as well as the C_{s} -oxygenated types, except section Bolophytum, which does not produce flavonoids that are not oxygenated C_6 . Some varieties and forms of P. integrifolium (section Partheniastrum) do not produce detectable amounts of 6-oxygenated flavonoids.

Although the flavonoid pattern of every taxon is distinct in some detail, there is little evidence of major differences in sectional trends in flavonoid structures. The tendency for forming methylethers and for 6-oxygenation in section Bolophytum is the most distinctive feature of the flavonoid chemistry of Parthenium.

PROCEDURES

Air-dried leaf material (100 g) of 1 to 20 population samples of each of the Parthenium taxa included in table 1 was ground in 85% aqueous methanol. After extraction (24 hr), the filtered solution was dried in vacuo and separated into a chloroform-soluble fraction and a methanolwater-soluble fraction. The fractions were separated into components by two-dimensional paper chromatography on Whatman 3 mm paper, developed first in TBA and second in 15%acetic acid. The color of the chromatographic components was recorded when viewed above acetic acid. The color of the chromatographic components was recorded when viewed above a broad wave-length uv lamp with and without ammonia vapor present. Individual spots were eluted with methanol and were rechromatographed, cochromatographed or analyzed by standard uv spectral procedures (13, 14, 15). Glycosides were hydrolyzed with 6% aqueous HCl. The aglycones were analyzed spectrally as before or were demethylated with the pyridine-HBr method of Rösler (see 16) for co-chromatographic comparison with authentic samples or with demethylated types of known aglycones. Kilogram quantities of dried ma-terial of *P. bipinnatifidum*, *P. hysterophorus*, *P. incanum*, *P. integrifolium*, and *P. fruticosum* var. *trilobatum* were extracted for polyclar column chromatography with various combinations of chloroform, butanone, methanol, and water for elution. Identification of flavonoids and coumarins was by comparison of chromatographic and spectral data of both glycosides and coumarins was by comparison of chromatographic and spectral data of both glycosides and aglycones with those reported for known structures. The chromatographic and uv spectral data for the 34 flavonoids are given in table 2.

ACKNOWLEDGMENTS

Some of this study of the flavonoids of Parthenium was accomplished during my graduate Some of this study of the flavonoids of *Parthenium* was accomplished during my graduate studies in the Phytochemistry Laboratories of the Botany Department of the University of Texas at Austin (directed by T. J. Mabry), but the greater part of this study was accomplished at the Phytochemical Laboratory of the Botany Department of The Academy of Natural Sciences of Philadelphia. These studies relate to several traineeships and grants: NIH trainee-ship 5 TO1 M-00789 (to T. J. Mabry) and NSF grants GB-26276 and GB-37666. I thank Margaret Buckby, Helgard Niremberg, Elaine Bishop, Carole Ram, Roy Hill, and, particularly, Helen R. Mears, for laboratory assistance over a period of years. Helen R. Mears produced the figure for this paper.

Received 7 November 1979.

BIBLIOGRAPHY

- T. Stuessy, Contrib. Gray Herb. Harv. Univ. 203, 65 (1973). 1.

- F. E. Lloyd, Guayule (Parthenium argentatum Gray). A Rubber-plant of the Chihuahuan Desert. Carnegie Inst. Washington Publ. 139 (1911).
 S. W. French, Mil. Surgeon, 66, 673 (1930).
 A. Lonkar, B. A. Nagasampagi, C. R. Narayanan, A. B. Landge and D. D. Sawaikar, Contact Dermatitis, 2, 151 (1976).
 E. Rodriguez, M. O. Dillon, T. J. Mabry, J. C. Mitchell and G. H. N. Towers, Experientia, 292 2026 (1076).
- 32, 236 (1976).

- $^{6.}_{7.}$
- E. Rodriguez, H. Yoshioka and T. J. Mabry, Phytochemistry, 10, 1145 (1971).
 E. Rodriguez, H. Yoshioka and T. J. Mabry, Rev. Latinoamer. Quim., 3, 184 (1972).
 J. A. Mears, Proc. Acad. Nat. Sci. Phila., 132 (1980). in press.
 J. A. Mears, Phytochemistry, 12, 2265 (1973).
 M. C. Shen, E. Rodriguez, K. Kern and T. J. Mabry, Phytochemistry, 12, 2265 (1976).
 F. Rodriguez, Sant Evel. 5, 207 (1077). 8.
- 9.
- 10.
- 11.
- 12.
- E. Rodriguez, Biochem. Syst. Ecol., 5, 207 (1977). R. C. Rollins, Contr. Gray Herb. Harv. Univ., 172, 1 (1950). T. J. Mabry, K. R. Markham and M. B. Thomas, The Systematic Identification of Flavonoids. 13.
- 14.
- 15.16.
- 17.
- J. Mabry, K. R. Markhain and M. B. Thomas, The Systematic Taenaplication of Flavonous.
 Springer-Verlag, Berlin. (1970).
 J. A. Mears and T. J. Mabry, Phytochemistry, 11, 411 (1972).
 J. D. Bacon, T. J. Mabry and J. A. Mears, Rev. Latinoamer. Quim., 7, 83 (1976).
 G. Howard and T. J. Mabry, Phytochemistry, 9, 2413 (1970).
 J. B. Harborne, T. J. Mabry and H. Mabry, The Flavonoids. Academic Press. London and New York (1975).
 H. Beslar, A. Staroval, T. J. Mabry, Phytochemistry, 10, 450 (1071). 18.
- H. Rösler, A. Star and T. J. Mabry, *Phytochemistry*, **10**, 450 (1971). J. B. Harborne, *Comparative Biochemistry of the Flavonoids*, Academic Press, London 19. (1967).20.
- W. Herz, S. V. Bhat, H. Crawford, H. Wagner, G. Maurer and L. Farkas, Phytochemistry, 11, 372 (1972). A. G. Valesi, E. Rodriguez, G. Vander Velde and T. J. Mabry, *Phytochemistry*, 11, 2821 21.
- (1972).